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ABSTRACT

Diffractive lenses have arrived. Literally hundreds of papers have been published lz_ and

technology impact reports have been written about the exciting addition of a new tool for the

lens designer. I Sophisticated computer programs have been developed to aid in the optimiza-

tion of these diffractive phase profiles for a wide variety of applications. Now, several

fabrication methods are being pursued to produce these diffractive elements economically. The

best known process is the etching of a multi-level relief grating, known as binary optics. 2This

process uses sets ofcomputergenerated lithographic masks. Another, more recently developed
method is Dry Photopolymer Embossing (DPE). 3 This replication process uses master

holograms. And now, diamond turning is being applied for the machining of these elements. 4-s

Diamond turning is especially well suited for infrared optics. As any process has advantages
and limitations, so has diamond turning. These advantages and limitations are discussed and

general guidelines are presented to aid the designer and systems engineer in the project

predesign stage.

1. INTRODUCTION

Diamond turning is a well established fabrication process for shaping high quality optical

surfaces on metals, polymers and crystals. It is therefore a natural extension to apply th is proven

process to generating surface relief phase profiles of diffractive lenses. The ability to guide a
single point cutting tool along a predetermined path to an accuracy of a fraction of one

wavelength of light makes this process very suitable for this task. The surface finish achieved
with diamond turning is of a quality generally acceptable for optical components for the mid-

and long wavelength regions of the infrared spectrum.

2. GENERAL REMARKS TO DIAMOND TURNING
DIFFRACTIVE SURFACES

Besides material limitations, an important factor that determines the practicality of diamond

turning diffractive surfaces is the number of annular zones (modulo 2n) required for a given

application. A single point cutting tool has a relatively large radius which is optimized for
achieving an acceptable surface finish in a reasonable time. For machining a diffractive surface,
this radius should be small to reduce the"shadowing" effect at the transition step from one zone

to the next. Much of this paper will address this effect since it is central to the practicality of

diamond turning diffractive surfaces.
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3. THE PHASE PROFILE FUNCTION

q_(r)= _ JAr2+B¢+ Cr6+ ...]
(1)

This is thewell known function for a rotationallysymmetric lens surface with rbeing the radial
coordinate of the profile, X0 the wavelength of inte_ and _ etc. the phase profile
coefficients. Their optimum values are de_ with computer programs such asCODE V,
OSLO and ACCOS.F_ preliminary evaluation it is worthwhile to truncatethisexpression and
examine the resulting approximations. This is being done in the following sections with the
assumption thatthe object is located at infinity,

4. THE MONOCHROMATIC SINGLET

A spherical wave front exiting a lens can be expressed by

q)(r)= [- _-_ + 8F_

By comparison with equation (1) it can be seen that

-...] (2)

1

2F
(3)

where F is the focal length of the lens. The negative sign indicates the direction of the phase
profile,

...... {

The firstzone radius, where the 2n transition ( one wavelength ) occurs is therefore at

Others occur at

r,=24Y-XoF "_,
tl

r = rt 4-ff d!.,---Z

Where n is the zone number. At the limit r = D/2, with D being the lens diameter.

The total required zones can now be determined from

Dz F
_o_ = _ =

8),0 (F/#)_ (6)
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Example 1 :

For a lens with F = 25 mm, F/# = 2, and Xo= 0.6328 lain, we find that approximately 1,235 zones

are required to achieve the focusing effect.

A more accurate number, which could be obtained from

F [ dl + 4 (F/#) 2- 20::/#)1
rh_'r - 2x_ (F/#)

(7)

is 1,216. Notice that the fast approximation is within 1.6 % which indicates the value of

simplicity.

From the expression

dMAx = (N%
(8)

-1)

we find the maximum depth of a zone at the transition, with N being the index of refraction of

the substrate material.

If the material used in the example is plastic, with an index of 1.527, the depth would be

approximately 1.2 lain.

5. THE MONOCHROMATIC HYBRID SINGLET

Hybrid is defined here as the combination of refractive and diffractive powers within one
element. An interesting case is a convex piano lens for which the basic power is provided by

the spherical shape of the first surface and the correction of the spherical aberration is achieved

with a diffractive phase profile on the second surface.

Considering third order aberration only,
one can express the longitudinal spherical
aberration for a thin convex piano lens by 6

[N 2 (N -2) + 2] F

Wspn = 128 Xo N (N -1) 2 (F/#) 4
(wavelengths) (9)

Example 2 : For the same basic lens from example 1, now shaped as a convex piano, we find

from equation (9) that Wsp H= 41 waves. This means that 41 zones are required to correct 3rd

order spherical aberration, since one wavelength is the OPD (optical path difference) for each
zone. That is why these lenses are sometimes referred to as "one wavelength Fresnel lenses".
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These two examples indicate the difference between having the job done with a diffractive
surfaceon a plane-parallel substrateand a combination ofrefractive and diffractive powers. To
beableto reduce the numbers of zones from 1215to41 speaks for itself. Furthermore, it isclear
from tl_ _ults that diamond turnink_-sitb_aneconomical metliodf_ _ixSing lenses 0fthe
first kind in any voi_e, it is, however, a good way to make prototypes to demo_te a
principle in a timely fashion; because no li_phic masks, no molds 0r m_fs arerequired.
Of conrse, there is not much room for any cutting tool radius. At the edge of the 12.5 mm
diameter lens, the spacing of the zones is about 2.6 lam. Therefore, the machining may have
to be done by plunge cutting.

6. BROADBAND LENSES 2.5,7

In addition to spherical aberration,a lens needs to be corrected for chromatic aberrationif it is

being considered for any broadband application.

To correct color, one takes advantage of the fact that the chromatic aberration of a diffractive

element is opposite in sign when compared to the chromatic aberration of a refractiVe element
as indicated in figure 1.

REFRACTIVE
HYBRID

ACt41qOMAT

COMMON

Figure 1. Principle of color correction with diffractive optics

Power 0R + ¢t) = ¢__T_AJ_

or F=--
FR+ FD

To correct chromatic aberration, the following conditions must exist

(10)

F_ = (1 - vdv o) F (11)

with

FR=(1 "VD/VR)F

N0"I
v R= and

-N,

(12)
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V R

V D

is called the Abbe number of refraction and vo is the Abbe number of diffraction.
indicates that for the diffraction effects, the lens material is immaterial.

is the center wavelength for which the index of refraction is N O.
are the short and long limiting wavelengths of the spectral band.

6.1. THE ACHROMATIC SINGLET

An excellent sum mary of what can be achieved by combining refractive and diffractive powers

in a single element to correct spherical and chromatic aberration is shown in figure 2.

_ n Spherical Aberration

N Chromatic Rberration _
- I Binoty Optics Corrected

11 6-96 11 6-96 45-35 45-35

IR MID IR VISIBLE UV

Figure 2. Examples of the chromatic and spherical aberration reduction possible by using a

refractive/diffractive lens [With permission from Lincoln Laboratory2].

It can be seen clearly how the degree of correction is dependent on the lens material, the spectral

region, and the relative aperture. For example, the F/1 germanium lens is overwhelmingly
afflicted with spherical aberration and mildly affected by chromatic aberration over the 2 lain

band width. On the other hand, the quartz lens applied in the visible spectrum over a band width

of 0.2 lain, shows much chromatic and little spherical aberration. To achieve a reasonable

correction, the relative aperture had to be increased to F/12.

It can also be seen how advantageous it is to use an aspheric surface for the elimination of

spherical aberration. By superimposing the phase profile onto the asphere allows the other

surface of the lens to be spherical. The preferred arrangement is to place the aspheric phase

profile on the second surface for better environmental protection. The spherical front surface

can be produced by conventional manufacturing processes if desired.

To find the first zone radius for such an achromatic singlet, the diffractive focal length is
substituted into equation (4) to form

r: =4 2Xo (l- Vp./VD)F (13)

The total number of zones required is then

F

nTC)T = 8_ 0 (l - VR/Vo) (F/#) 2

(14)
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-- ii ii_ _ _:

Considering that the center wavelength for the 3 to 5 lainregion is 4 lain and the diffrac five Abbe
number is -2 leads to very simple approximations. "

and

rl =-'_-VRF [ r1and F in ram] (15)
3-5 15.8

naxrr = 62F [Finmm]
3-5 VR 0::7/#)2

Summary for the 3 to 5 _ region .... -

Material va r_ nro.r

Silicon 235.5 1 [q'-F-]
Zinc Selenide 176.7 0.84

Zinc Sulfide 133.8 0.73
Germanium 104.8 0.65

0.263 [ F/if:l#) 2 ]
0.351
0.463
0.592

(r I and F in mm)

(16)

40--q

40--I

1..4

2o-I

-'-4

Zorm# n

Figure 3. Number of zones as a function of F/# for different materials

Example 3: A ZnSe lens with a relative aperture ofF/1.5 requires 16zones. This is a reasonable
low number for a 67 mm diameter diamond turned grating.

Figure 4 shows a 50 mm diameter diamond tumedZnSdiffmctive lens for the 3 to 5 lam regionl
The narrowing of the zones towards the edge of the lens can clearly be seen.

i
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Figure 4. Diamond turned achromatic singlet

Similarly as for the mid IR region, one can summarize for the 8 to 12 lam window, where

= 10 lain and v, = -2.5 :

and

"_-vRF
r I

11.2

31F
nTO T _-

v R(F/#)2

(17)

(18)

Summary for the 8 to 12 _m region

Material v R r]

nTOT 1

0.036 [F/(F/#) 2]
0.282

0.539

Germanium 863.0 2.62 ['J-F ]

Amtir 3 109.8 0.94
Zinc Selenide 57.5 0.68

Zm'_el n

60-

- 7.nS, -_ 8 to 12Fro reg I°n

__ _ F= lOOmm

l +_s _ 215 u F/I

Figure 5. Number of zones as a function of F/# for different materials

One can see how effective germanium is in this region.
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6.2. DIFFRACTION EFFICIENCY

It has been stated thai the scalar theory used to predict diffraction efficiencies is overly
optimistic. An extension to this_ry was developed in early 1991 at the Lincoln Laboratory?

This extended scalar theory takes into account the ratio of the wavelength and the grating period.
The equations developed show that when that ratio is very small -or in other words- if the period

is much larger than the wavelength, the impact on the efficiency is negligible. Th__ is the case

for all the _on_ed-_-tics disc Ussed here. Therefore, onlyexp_|0ns b_on the pure

scalar theory will be _lied for tbe_ pfed_i_c_n_L__mtioiis.

The grating efficiency_ref_-to_efh-st diffraction order is _

sin [_ (_- -1)]
et -_ [ , ]2 (19)

n ',_ 4)

This yields, when integrated over a band width of A Z. -- gL- gs, an approximated average
efficiency of

_l -= 1- 7c2 , _ )2 (20)
36

It is very impo_t to be aware of the efficiencies at the band width limits. Looking at the

average value can be deceiving and can cause serious systems problems. This is best
demonstrated by looking atthe limits of the two spectral windows.

The average efficiency for the f'LrStorder over the 3 to 5 pm window is approximately 0.931,

a relative large nuniber. The efficiency at 5 pm is only 0.875 and drops even further down to

0.6_at 3 _. F6/'-_e 8 to 12 pm window, the situation is somewhat better, but still of great

coucem for any given @plication. The average efficiency over this window is 0.956 with 0.912
at the long wavelength and 0.811 at the short one.

I_1

oJ

3 4
_o

5 pm

Figure 6

Diffraction efficiency over

the 3 - 5 pm region

tl
i

1

0.8.k_

O.64

lO
)-o

Figure 7

Diffraction efficiency over

the 8 - 12 pm region

12_
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It is worthwhile to mention that for some specific applications it may be desired to take

advantage of this roll-offeffect. An example may be a radiometric application which favors that

the peak efficiency occurs at say 4.5 lam ( detect ) with a lower transmission (diffraction

efficiency) at say 3.2 lain ( guard ). Figure 8 shows the efficiency dislribufion for this case.

0.8

0.6

0.4 : :
3 3.2 4 _ §

Figure 8. Blazed phase profile, for peaked efficiency at 4.5 lain

Another possibility for the efficiency distribution over the spectral band is to shift the center

wavelength 7%so that the efficiencies at both limiting wavelengths are equal. From equation
(19) one can find by inspection that this occurs for the 3 to 5 lam window when _.0= 3.75 lain

and at _o = 9.6 lain for the 8 to 12 lam window.

As a general comment, one has to keep in mind that the energy not transmitted into the fast

diffraction order goes into other orders and must be treated as stray or scattered radiation.

6.3. SURFACE ROUGHNESS AND SCA'I"rERING

The surface finish achievable with diamond turning is related to the radius of the cutting tool,

the cutting feed rate, the stiffness of the machine and the material being machined. 9'z°

Additional factors, such as coolant and others, apply as well. Surprisingly, the surface quality

is quite insensitive to surface speed. That is confirmed by the fact that most of the diamond

turning machines in use today do not have a continuously variable spindle speed which would

be required to maintain a constant surface speed.

From the above parameters one can make some prediction about the expected surface finish.

RT --

-- p-v

'r r--
Figure 9. Theoretical Surface Finish

R r = cutting tool radius

= feed per revolution
P-V = peak to valley surface roughness
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From the figure it can easily be seen that

P-V _ -- fr2 (theoretical_ (2i)

Typical values are RT = 0.030 inch and f_= 0.0003 inch per revolution. This yields aP-V finish
of 0.375 lainch or 95 A. Surface roughness is Usually Stated-in RMS and a reasonable factor
between P-V and RMS is 6. This is also a good factor to be considered for the influence on the
finish caused by the limited machine Stiffness and other factors mentioned earlier. Therefore,
since these two factors cancel each other, a more realistic surface roughness prediction is

f2

RMS _=_8R (more realistic) (22)
-Vl-

i

I0 _o L2 ),is typi'_. I' 'S' depending o eing i
iJ bf e,_ a aexce pt3final Ksth-diai_bn_t_ own

r_ ; fl ; ] V to R_ 4S ratk tproximately 6.

1.

l
.... .

|
!

i

A surface roughness of 80 _o 120 A is typical. It varies' depending on the material being
machined. Th_i'oughness i_rbflie0f an excepti6nally s-mbo-tia-diainbn_tiu'nedSurface issh6wn

in figure 10. It also confirms the P-V to RMS ratio of approximately 6.

RMS: 6.33 nm
RA: 5.07 nm
P-V: 38.4 nm

S 127 24B 3_9 4g_

Di=lancm (Microns)

Figure 10. Roughness profile of a diamond turned surface

The roughness of a surface is another source for energy through-put reduction. This is due to
scattering. To assess the magnitude of this loss, the relation for TIS (total integrated scatter)
devd0ped by the Naval Wea_ns Center_1is being appiied:

TIS = [4_5_ ]2 (23)

where 5 is the RMS surface roughness and _ is the wavelength of interest. For a roughness of
95 A and a wavelength of 4 Ima, TIS is approximately 0.1%, which is negligible for these
predesign considerations.
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6.4. BLOCKAGE OF RADIATION CAUSED BY DIAMOND TOOL RADIUS

The radius of the cutting tool forms an annulus at the transition from one zone to another. This

causes an energy blockage which is illusu'ated in figure 11.

r n

:iiii!!iiiiiiii!iiiiiiiii_iiiiiiiiii!iii}ii}iiiiiiiiiii!i_i}ii!!iiiiiiii!!iiiiiiii_iii!i}iiiiiii!i}iii_

,

Figure 11. Zone transition geometry, showing the cutting tool radius effect

The area of the blockage or shadow formed by one ring is

A_. = 2_rnS (24)

The total shadow is therefore

nTOT-1
As----2nS Z

I
r. (25)

With s = 2,/2---Raxl._and some additional substitution one can determine that

Over the total lens area --

A= t z _ (26)
N (N-I)nvov I

D_

, the loss due to this shadowing effect becomes

L_ z q-n-
(N -I)n3_r I

with N being the index of refraction of the lens material.

(27)
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Example 4:

The ZnSe lens from example 3, with N= 2.433, F = 100 mm, F/# = 1.5, _o= 41am, has 16 zones.
With a tool radius of 0.030 inch, the transmission loss due to the tool caused shadowing is
approximately 4%. This could be reduced to 2% if the tool radius would be decreased to .010

inch. The surface roughness wouldgo up to 286 A. To maintain the 95 A surface roughness,
the tool feed would have to be slowed down to 0.00017 inch per revolution. This in turn would

approximately double the machining time and therefore increase the cost of the lens. Again,
these are all considerationsto be i,alcen into account at the preliminary project stages.

Judging from all this, it becomes clear that the optical performance limitation of broad band

lenses is not so much dependent on the method of manufacturing but On the roll-offeffects in

the diffraction efficiency at the upper and lower wavelength limits.

6.5. COMMENTS TO USABLE BAND WIDTH

Looking at equation (20) differently provides a better picture of the relationship between the

usable _ width for a desired efficiency. It also shows clearly the advantage of using
diffractive lenses at longer wavelengths.

a Z._= _- ,/I - [] (28)

One can see that for an average efficiency of 99% the band width in the visible can only be 0.1

lain. For the mid IR this increases to 0.76 wn and broadens to 1.91 lain for the long wavelengths
region. This has been already demonstrated in principle in figure 2.

7. THE AiR SPACED ACHROMATIC DOUBLET

APetzval type lens has been chosen for these predesign considerations for an air spaced doublet.

The uniqueness of such a lens simplifies the discussion and provides a good startingpoint for
a well performing IR objective.

The assumptions for this Petzval objective are: TM

F^ = 2F, FB = F, d = F. With this, the BFL = F/2. The stop is at the front element which is

the hybrid lens. Both lens elements are from the same material. The symbols and relations are
identified in figure 12.

A g

r--'-- 1---- ,,., ------"

FM-IF

Figure 12. Relations for the basic Petzval objecuve
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Usingthe same basic approach as for the singlet and applying the general 3rd ordor expressions

for separated thin lenses, the following approximations can be developed.

and 3F

n_r = 32 _0(1- VRA,t_ (r:/#)2

expressions, simplified for the two spectral windows, are

3 to 5 lain window

(29)

(30)

First zone radius

Total number of zones required

1rl_-
3-5

47 F

rtror -_-vR(F/#)2
3-5

(31)

(32)

8 to 12 lam window

First zone radius 1 ,rv-;,F
rl-= _-

8-12
(33)

Total number of zones required 23.5 F

nrcrr_--VR(F/#)2
8-12

Looking at the same materials as before we can summarize for the two regions

Petzval for the 3 to 5 tm_ region

Material rI naxrr

Silicon 1.1 ['_] 0.200 [ F/(F/#) 2 ]

Zinc Selenide 1 0.266

Zinc Sulfide 0.84 0.351

Germanium 0.75 0.448

For ZnSe, F/I.5, F= 100mm: r_ =10mmandrtlxrr= 12zones.

(34)
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Petzvalforthe8to12lain region

Material r_ n_r

Germanium 3 [ q_F] 0.027 [ F/(F/#) 2 ]
Amtir 3 1.1 0.213

Zinc Selenide 0.78 0.407

The remarks made earlier about diffraction efficiency, surface roughness and the shadowing

effects remain of course valid for any diamond turned diffractive elemefit in an optical train.

Figure 13 shows such a Petzval objective which replaced a triplet. 5._3Its focal length is 84 mm

and its relative aperture is 1. The elements are made from germanium. It is being used in the

8 to 12 lain band with a stating detector array in the focal plane.

Frorn the table above it can be seen that only 3 zones are required to correct the chromatic

aberration. Spherical aberration was eliminated by aspherizing the f'wst surface. The objective

has an excellent performance over a total field of view of 8°. The 80% blur spot was calculated

to be close to the diffraction limit. The measured one was somewhat larger.

A similar Petzval objective for 3 to 5 pm has been designed and manufactured with silicon

elements. It is being tested now. Because Silicon is difficult to diamond turn, another objective

with the same focal length of 50 mm has been designed, using ZnSe for the diffractive hybrid

front element and a Si lens in the rear. The expected 80% blur spot size is 32 Pm over a total

flat field of 11.5 °. These lenses have been optimized with CODE V and OSLO. The resulting

phase profiles obtained with these computer programs confum the validity of the presented
predesign approximations.

il

Figure 13. Comparison of a diffractive doublet which replaced a conventional triplet.
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8. CONCLUSIONS

From the presented material one can conclude that for reasonable focal lengths the number of
diffraction zones required to correct chromatic aberration is relatively small for hybrid lenses

applied in the two most common IR windows. This makes itpossible and very practical to use
the process of diamond turning. Beyond the singlet and the doublet there exists a wide range
of opportunities, limited only by ones imagination, for the application of these hybrid
components. These diffractive elements are an additional tool for the lens designer. They are
of particular value for a system when reduction in weight, cost and size is of interest.
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